Search results

Search for "chemically modified oligonucleotides" in Full Text gives 3 result(s) in Beilstein Journal of Organic Chemistry.

Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications

  • Christopher Liczner,
  • Kieran Duke,
  • Gabrielle Juneau,
  • Martin Egli and
  • Christopher J. Wilds

Beilstein J. Org. Chem. 2021, 17, 908–931, doi:10.3762/bjoc.17.76

Graphical Abstract
  • oligonucleotides that have been explored for gene silencing. Keywords: antisense; chemically modified oligonucleotides; crystallography; siRNA; structure; Introduction The natural nucleic acids sugar-phosphate backbone comes in two flavors, 2'-deoxyribose in DNA and ribose in RNA. However, this relative
  • techniques, such as crystallography, have provided insights to rationalize numerous properties including binding affinity, nuclease stability, and trends observed in the gene silencing. In this review, we discuss the chemistry, biophysical, and structural properties of a number of chemically modified
PDF
Album
Review
Published 28 Apr 2021

DNA functionalization by dynamic chemistry

  • Zeynep Kanlidere,
  • Oleg Jochim,
  • Marta Cal and
  • Ulf Diederichsen

Beilstein J. Org. Chem. 2016, 12, 2136–2144, doi:10.3762/bjoc.12.203

Graphical Abstract
  • functional groups into its native structure [10][11]. Such chemically modified oligonucleotides are useful intermediates for their subsequent functionalization through post-synthetic protocols [11][12][13]. Within a post-synthetic strategy, a nucleotide analog is modified with a reactive functional group
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2016

Multivalent dendritic polyglycerolamine with arginine and histidine end groups for efficient siRNA transfection

  • Fatemeh Sheikhi Mehrabadi,
  • Hanxiang Zeng,
  • Mark Johnson,
  • Cathleen Schlesener,
  • Zhibin Guan and
  • Rainer Haag

Beilstein J. Org. Chem. 2015, 11, 763–772, doi:10.3762/bjoc.11.86

Graphical Abstract
  • more are being developed [1]. Although a direct delivery of “naked” siRNA or chemically modified oligonucleotides [2] has been studied, delivery vectors are typically required for efficient siRNA delivery in vivo due to unmodified siRNA’s low stability towards endogenous enzymes, poor cellular uptake
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2015
Other Beilstein-Institut Open Science Activities